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A normal mode vibration analysis was made of a Saturn I vehicle using
a newly developed lumped parameter multiple beam representation incorporat-
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motions of the outer tanks. The analysis demonstrates the uncoupling of
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bution of mass and stiffness., A few cases of nonsymmetry were examined
and numerical results were obtained which show the effect of vehicle non-
symmetry on the natural frequencies of the vehicle.
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Symbol

DEFINITION OF SYMBOLS

total displacement of center tank

unit vector for center tank in pitch, yaw, and roll,
respectively

unit vector for outer tanks, radial and tangential,
respectively

ith mode amplitude factor for center tank bending
in pitch

ith mode amplitude factor for center tank bending in
yaw

ith mode deflection of center tank in pitch

ith mode deflection of center tank in yaw

amplitude factor for center tank rigid body trans-
lation in pitch

amplitude factor for center tank rigid body trans-
lation in yaw

rigid body translation of center -tank in pitch
rigid body translation of center tank in yaw

X = Xpe, where xXp. is the center of mass of center
tank '

amplitude factor for center tank rigid body rotation
in pitch

amplitude factor for center tank rigid body rotation
in yaw

rigid body rotation of center tank in pitch

rigid body rotation of center tank in yaw

iv




DEFINITION OF SYMBOLS (Continued)

Symbol Definition

vf(t) amplitude factor for center tank twisting in roll

v(t) amplitude factor for center tank rigid body rotation
in roll

Wf(x) torsional deformation of center tank in roll

(3 rigid body rotation of center tank in roll

'3T(x) total displacement of outer tank

Aep (0D amplitude factor for outer tank radial bending

ch(t) amplitude factor for outer tank tangential bending

rTf(x) deflection of outer tank in radial bending

tTf(x) deflection of outer tank in tangential bending

%RT(t) amplitude factor for outer tank rigid body motion,
radial

ORT(t) amplitude factor for outer tank rigid body motion,
tangential

RT rigid body radial displacement of outer tank

TT rigid body tangential displacement of outer tank

AyT(t) amplitude factor for rigid body rotation of outer tank -

radial motion

o} T(t) amplitude factor for rigid body rotation of outer
P tank - tangential motion

rigid body rotation of outer tank - radial motion
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m (x)

kSRJ’ kSRK

ky

k. , k

aTr®> bTr

DEFINITION OF SYMBOLS (Continued)

rigid body rotation of outer tank - tangential motion

X - X ., where x is the center of mass of outer tank
mT mT

mass per unit length of center tank

mass per unit length of outer tank

length of center tank

length of outer tank

rotary inertia per unit length of center tank

distance from C.G. of center tank to C.G. of outer tank
motion of center tank with respect to outer tank 1
station at top connection of center and outer tanks
station at lower connection of center and outer tanks

station at suspension point of center tank
slope in pitch and yaw, respectively

longitudinal spring constant of outer tamk in pitch
and yaw, respectively

translational suspension spring constant in pitch and
yaw, respectively

rotational suspension spring constant in pitch and yaw,
respectively

torsional suspension spring constant

radial connection spring constants of outer tank at
a and b, respectively




S ol
kaTt’ kat

krTr

kth

rE' (%)

tx' (x)
(D)

MﬁY’ GZ
“FFY’ “FFZ

Gy
“FPy

M:GTr’ MGTt

“Hrr’ “HETE

DEFINITION OF SYMBOLS (Continued)
Definition

tangential connection spring constants for outer tank
at a and b, respectively

radial rotational connection spring constant for outer
tank

tangential rotational connection spring constant for
outer tank

slope of outer tank in radial motion

slope of outer tank in tangential motion

+1 for T=1, 3, 6, 8 -1 for T= 2, 4, 5, 7

center tank generalized mass in pitch and yaw,
respectively

uncoupled natural frequency in pitch and yaw, respectively
generalized torsional inertia of center tank
uncoupled natural frequency in torsion

generalized mass of outer tank, radial and tangential,
respectively

uncoupled outer tank natural frequency, radial and
tangential, respectively

coupled natural frequency of complete system

vii



TECHNICAL MEMORANDUM X-53089

THREE-DIMENSIONAL MULTIPLE BEAM ANALYSIS OF A SATURN I VEHICLE

SUMMARY

A normal mode vibration analysis was made of a Satu.n I vehicle
using a newly developed lumped parameter multiple beam representation
incorporating coupling of the center tank motion in pitch, yaw, and
roll with the motions of the outer tanks. The analysis demonstrates
the uncoupling of motions in pitch, yaw, and roll for a vehicle having
a symmetrical distribution of mass and stiffness. A few cases of non-
symmetry were examined and numerical results were obtained which show
the effect of vehicle nonsymmetry on the natural frequencies of the
vehicle,

I, INTRODUCTION

This report presents a normal mode vibration analysis of a complex
space vehicle of the Saturn I type. The analysis uses a lumped param-
eter multiple beam representation of the vehicle which incorporates the
coupling of motion of the center tank pitch, yaw, and torsion with the
motions of the outer tanks. The outer tank motions include the radial
and tangential degrees of freedom of each of the eight outer tanks,

The analysis demonstrates the uncoupling of motions in pitch, yaw,
and torsion for a vehicle having a symmetrical distribution of mass and
stiffness, The solution presented is generally capable of treating most
types of nonsymmetry; however, the limitation of available computer pro-
grams prevented treating more complicated nonsymmetries than those treated
in this presentation.

II., MATHEMATICAL MODEL

The Saturn I vehicle consists of a booster center tank to which
are attached,by various connecting members, four outer LOX tanks and
four outer fuel tanks; above the booster are the upper stages of the
vehicle., The vehicle structure and configuration are shown in the
reference,



In the multiple beam type of analysis, the center tank of the booster
and the upper stages are considered as a single free-free beam, The outer
tanks are treated as separate beams elastically connected to the center
beam. More detail regarding the assumptions involved in this representa-
tion can be found in the reference.

A schematic section of the booster stage showing the unit vectors
defined for the coupled system of equations developed in the analysis
is shown in Figure 1. All vectors are unit length.

I1II, EQUATIONS OF MOTION

The motion of the center tank was represented by three flexible
modes and two rigid body modes in both the pitch and yaw directions,
and by one flexible mode and one rigid body mode in the torsional degree
of freedom, Thus, displacement of the center tank is

-

D_(x) = q%(t) yx(x) T+ pr(t) z%(x) K+ ve(t) y*(x) ¥

where
3
i (E) yE(x) = Z HORMORENOR AR NORNORA
i=1
3
wk(t) zk(x) = Z (6 z () + o (8) Z - x_(x) () 8,
i=1

VE(E) WG = v (8) () + v(e) U

The motion of each outer tank was represented by one flexible mode
and two rigid body modes in both the radial and tangential directions.
Thus, displacement of the outer tanks is

o = \* 2 z 3 St T - =
DT(x) = %T(t) r%(x) rn + oT(t) tT(x) tT’ T 1, 2, ..., 8




where

Np(t) rE(t)

ox(t) th(x) =

The

K.E. =

N =

N =

Aep(E)Tpe (6) + App(£) Ry = XpGx) A p(8) 7

T=1, 2, ..., 8

ofT(t) tTf(x) + oRT(t) TT - iT(x) GBT(t) B..;

T=1,2, ..., 8.

total kinetic energy of the system is

2

fm (x) E n*(t) y*(X)] + hd—t w* (t) zé‘(x)]? dx
£, )
2
f 1. [E v¥(t) \I:*(X)] dx
zc

2 2

L (x) £(6) theo) |+ L ey exex) | boax,
My at °r T

To compute the potential energy of the system, the center tank is
related to the coordinate systems of each of the outer tanks by trans-

formations,

Tank I:

one of which is given here as an example:

N2~ J—_>
K = 5 1 ty
j’;'- i;:-§3_+-i%:-fl

RT,

¥=-



D (x) = [- Jz_?l +\/-§— 1} [n*(t) y*(X):] [\/%_ T +\/%—?1} [u*(t) z;';(X):l

- Ry*(t) y*(x) Ty

Ri(x) =1, Ne(t) ¥ (x) +“/—§: n*(t) yg(x) - J—g-_u*(t) zj;(x)}

"

+ 2, [oh©) 560 - 2 pr ) e - J%_ wk(E) 2% ()

.

+ Rv¥(t) Ip*(x)J .

The total potential energy of the system is

2

P.E. = % k'LJ [Tl*(t) yt' (a) - T]*(t) yz';' (b)} + % kLK {:}Ik(t) zi:“' (a) =

2 2 2

- we(e) 2%’ (b)} + 3 kg [wt) _wg(s)} + 3 SK{ “(t) z*<s>}

2 2 2

1 1 1
+ 3 kg, @*(t) v (s):l ¥ ke [w'v(t) =¥ (s>} +3k, [v*o:) w*<s)}

)

T=1,2,5,6

N'H

[x],(t) @ - (DT ) yra.

2

- pr () Z"g(a):l

2.
2




+ Z %‘ka,rr {Nf(t) r“%(a) - % [(-—1)T + 1] % (t) yi(a)
T=3,4,7,8

2 3
et o gl T b [0 o

T=1,2,5,6

. 2
C ™ o e - xo z§<b)J

+ z 3 Mgy JL>€;(t> HORE {(-1)T + ﬂ TH(E) y*(b)

T=3,4,7,8

2
% [(-1) } u* (t) ZZ‘(b)} + z %krTr_' [Ar*(t) rx' (b)

T=1,2,5,6

2
- 1T pE(e) v ) - S5 pr(e) 2 ()

TN2 J2 . :l

) g {x’;m et () - 5 [(-I)T + 1] 7+ () y*' ()

T=3,4,7,8

2
%[( ShS }u*(t) 2 (b)} ) R [ogm th(a)
T=1,2,5,6



T2

+ (-1) 5 7% (t) Y*(a) - «/__2: u*(t) z*(a) + £(T) Ry*(t) w*(a)]

+ Z %kaTt {*(t) tr@@) + 3 [( -t } n*(t) y*(a)
T=3,4,7,8 .

-3 {(-1)T + 1} WE(E) 2% (@) + L(D) Ry*(t) w*(a)}

¥ Z 3K o [o © 20y + (DT wo yre)

T=1,2,5,6

2
2 ke 20 + @ k) w*(b)]

)3 Tt{*(t>t<b)+ [( n? }nw) 7 (b)

Nll—'

[( T4 1] we(t) z5(b) + ((T) Rv*(t) w“(b)}

* Z %-kth [ (t) t* (®) + (- 1>T£ m#(t) v (b) - Jf: u(e) z%' (b)

T=1,2,5,6

3 3

+ z %kth {0 (t) t* ®) +3 [( E } e (e) yx (b) +
8

T=3,4,7,

2

]

2




2
1 !
et 1o o) 1 ;o K gy

1 2 1 2 :
7 () My, o, + 5 VET(D) Loy “%Fw

8 8
1,2 1 .2
= Nk 2 = g% 2
* ZE: 2 N (O Mory Yipre }Z 2 9F (8 Mgre “hypes
T=1 =1 :

The equations of motion were obtained by applying Lagrangé's
equations, where

L = K.E., - P.E.

and

d (oL oL

—_— —— —-—0.

dt \3q;/ = dq;

This procedure gives a system of i equations in i generalized
coordinates, Thus,

[ (e))

u* (t)
vk (t)
A3 (E)
{éi}-= * |, the generalized coordinates,

NE(e)

o3 (t)




The following examples will serve to illustrate the procedure for
determining the generalized coordinates, qj.

First example, q = A’;(t):

d [6 K.E. ]
a Lakim

f i, (x) .7.\-";_(t) r¥2(x) dx = - 7\7;(t) fﬁl(x) r’i‘z(x) dx

£q "
- -w27\"]‘_(t) MGlr
1 L
+ oy | M1(8) TI0) +J‘§t *(£) v - J—gt *(t) zi“(b>} i)
L
i ' . 1 ¥ ,
gy MO 1O +J_§_; ' (e) yg ) - \/—? u(e) 2% (b)J ¥ (b)

*
+ A(t) Me1r wﬁ}llr’

Second example, q = v¥*(t):

d [9(R.E.)
dt | dv*(t)

f I (0 v(e)y*  (x)dx= - WPv¥(t) f 1, 7 (x) dx
Le

'eC

- w? yR(t) IG\V




J2.

- =5 wF(t) zE(a) + Rv*(t) \lr*(a)] {Rq:*(a)}

+ ... + ka8t [cg(t) tg(a) - u*(t) zﬁ(a) + Rv*(t) W*(a)} [Rw*(a)J

J2_

+ k. [oi(t) ti®) - Y%;-n*<t) ye(b) - =5 wF(r) 2% (b)
+mawwﬂmjﬁwwﬂ
Fa by [cg(t) t5(®) - wH(E) zE®) + Rvx () ¢*<b)] [Rw*<b)}

+ v¥(t) IG\II w}_‘%FW.

For a symmetric system, note that the following equalities apply:

1. AS(e) = AE(e), AE(r) = M), AE(E) = AS(r), AE(e) = AS(p)

2. k =k , etc.
air asr

3. kbJ.r B kb5r’ ete.

4, k =k , etc,
rir rsr

3 kalt - kast’ ete.

6. kb1t = kbst’ ete.

7. k =k etc.

rit rst’



To combine terms, the following definitions were made:

1. %'kalr + E'kazr * ka4r + %'kalt * %'kazt * ka3t - % KAn
2. %'kblr T %'kbzr M kb4r + % kb1t * %-kbet * kbzt - % KBn
3. %'krlr + %'krzr + kr4r * % kr1t + %'krzt + kr3t - % KRn
4. % kalr + %-ka2r + ka3r + %'kalt + %'kazt + ka4t B % KAp
3 % kb1r + %'kbzr + kb3r * %.kblt + % kb2t * kb4t B % KBu
6. % krJ.r + %'krzr * kr3r * % kr1t + %' rot * kr4t B % KRM

7. ka:Lt * ka2t + ka3t + ka4t B KTAq;

8. kblt + kb2t + kb3t * kb4t - KTBq;

Because of symmetry, there are alternate expressions for the
above K terms, For example, the first expression can be written as
follows:

ast

10




Similar expressions can be written for 1/2 (Kg,), etc. By means of the
above expressions, the system of simultaneous equations was reduced to
a system with the following generalized coordinates:

n*(t).
p* (t)

A (1)

=Y
[aald
.
[}
Q
2k .5;(-
. ~~ ~ .
r 2
N 4
.

The following examples show typical determinations of the
generalized coordinates, q;.

First example, q = %ﬁ(t):

N

Tl*(t) l:__%_k N2

e VE @ 0 + 55k yE@) i)

F, o )]

* “*(t) [- i_%_ kr:Lr zil () rvi' ®) - \/'3: kalr Zi(a) r’f_(a)

g, o o)

11



* = - o *lz *2 2
+ ?\l(t) [MGlr (wHI-Ilr ) + krlr rl (b) + ka':l_r rl (a) + kbl]’.' r?. (b)]

+ %) [0] + ... + NE(E) [0] + o¥(E) [0] + ... + o%(t) [O]
+ v¥(t) [0] = o.
Second example, q = v¥(t):

n¥(e) [0] + p*(e) [0] + Ni(t) [0] + ... + AL(t) [O]

+ o% (t) likalt th(a) Ry*(a) + k  t1(0) Rxp*(b)J + ...

+ ag(t) ka8t tg(a) Rw*(a) + kb8t t§<b) Rw*(b)J

(.

* 2 _ .2
+ vo(t) | I (wFFW ws) + 2kTA

2 7':2
oy REY (b)

2, %2
R=™ (a) + 2kTB

v \

+k *2()}—0
y v

The generalized coordinates {ﬁi} were then transformed by algebraic
operations into new generalized coordinates {q;}. 1In these new coordin-
ates, the equations of motion possess no coupling between center tank
pitch, yaw, and torsion. These new generalized coordinates are as
follows:

12




£

n*(t)
?\":‘L(t) - 7\2(‘3)

M)

3 (05 - ok + ok(e) + oh(D)]

- INE@R) + AE(D)]

5 [o5(e) + oi(e) + o5(t) + oe(e)]

vx(t)
3 Lof(®) - o5(®) - oh) + ok(o)]

L 1ok(t) - of(t) - oE(r) + oi(D)]

[07(t) + oi(t) - of(t) - ok(t)]

[o5(t) + d%(t) - o%(t) - oi(t)]

13



. In terms of the ?oordinates {q;}, the system was reduced to five
independent sets of simultaneous equations which were solved by exist-

ing computer eigenvector programs. Expressed in eigenvector form, the
equations of motion are:

L] L] Do) e

o] Do) Lo o] [#]

Some additional identities for the symmetric vehicle were defined
where the subscripts 0 and F refer to LOX and fuel, respectively.

1. k =k = k

alxr azr aor

L}
o
N

!
I
R

3. kbJ_r

r3r r4r rFr

14




a3r a4ar aFr

6. kb3r kb4r N kar

“rit rat rst ret rot

8. ka:Lt = kb1t = kast N kast = kaot

it
]
]
{1

2. kbJ.t kbzt: kb5t kb6t kbot

10. kfzt = kr4t = kr7t = krst = krFt

1. ka3t = ka4t = ka7t - kast = kaFt

12, 30 =10 = Kooe = Koot ~ Fore

The same subscript identification was used for the quantities rj(x),

r§(x), tﬁ(x), t§(x), Mcors Mgrr> Mgot» MGFt» WHHors “HHFr» “HHot» “HHFt-

The uncoupled equations for the submatrices are as follows.

1. A submatrix, n*(t) uncoupled equation:
() Mo (WS o - °) + y*'z(a) + £ (a) + *=(b) + *2
GY ““FryY Kkn ¢ %An Ve KBnyc (b) Ks3 Y ()

2 ] ]
+ Kgp V5 (8) + K | [y}’j (@) - y¥ (b)]7+

15



n* (£) [«5 k

16

+ <x’§(t) - AZ(t)) [\/? ko, Y5 ®) 1 ) 442k yHG) r¥()

r

+N2 k_ yE(b) rﬁ(b)} + Mg (t) [- 2k

%! %'
bor vz () rp (b)

rFr

- 2k, ye(a) th(@) - 2k o yo(b) r‘i;(b)}

J" *'
5 () % ()

+% [ci(t) - on(t) + o¥(t) - Gz(t)} {- N2 LI

- ﬁkaot v¥(a) th(a) - N2 k o ¥E(®) t‘g(b):]
+ % l:c*j(t) + o’;_(t)J [- 2 o vE () tE (b) - 2k . y¥(a) ti(a)

- 2kat yﬁ(b) tg(b)] = 0.

2, A submatrix, [Aﬁ(t) - %é(t)] uncoupled equation:

ror VE ®) TE ®) +42 k__ ¥E(@) rF)

+2 Kk yE) rg<b)} * [x’;(t) - xé(t)} [MGO,_. T

2
%' %2 %2 =
+ kror r0 (b) + kaor ro (a) + kbor r0 (b)} 0.




3. A submatrix, ki(t) uncoupled equation:

(L) [ 2k po YE () rF (0) - 2k . y¥(a) rE(@) - 2k yE(b) rg(b)]
+ N (t) 2 2) + 2 x® %2
2orr ppe = W) T 2o, TR (B) + 2k TE(a)

+ 2k o r§2(b)] = 0.

4, A submatrix, —i- [o%(t) - g*e(t) + o¥(t) - oE(t)]
uncoupled equation:

T () [- e kot Yo () £51 () - V2' & yk(a) t%(a)

aot

N7k vEG) tj;(b)] + 3 [om;o:) - ox(E) + o(E) - cg(t):l

. b= 2 *'2 2 ‘2 =
[MGot (wHHot - )+ krot to ®) + kaot tg @)+ kbot tg (b)} 0.

5. A submatrix, %-[Ug(t) + c?(t)] uncoupled equation:
' %! % %*
* (t) [— Zk o v () £ () - 2k vE@) th@) - 2k o yE(D) tF(b)}

S [0§(t)+d*(t)] [ZM (w2 - w?) + 2k t*'z(b)
2 7 GFt ““HHFt tFt F

2 *2 =
+ ZkaFt t% (a) + Zkat tF (b)} 0.

17
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6. B submatrix, p*(t) uncoupled equation:

e (t) {Mcz (= 09 + K ') + Ry, 25 (@) + Ky Z%°(b) + Ky z* (s)
2

+ Rypy z“g'z(s) + K ‘:z“g' (a) - zg' (b)] }

- [ﬁ{(t) + x’g‘(t)] [J? kozx' )t (0) +42 Kk 2%(a) i)

*! %'
rFr Zc (b) rF (&)

+2 ko 25 () r‘g(b)} + N(t) {- 2k
- 2kaFr zg(a) r%(a) - Zkar zg(b) r?(b)}

+ % [o’i(t) + o%(t) + o(t) + o’é(t)jl [- J2 K z%' (b) t%' (b)

rot

4

ko 25@) £3@) - J2o k. 25 (0) t:';(b)]
+% [ci(t) + cg(t):i [- 2k _o. z%' (b) _tw-Fc' () - 2k___ z*(a) tE(a)

- 2kat zﬁ(b) t%(b)} = 0.




7. B submatrix, - [%i(t) + ké(t)] uncoupled equation:
O g = 0) 150+ e o s
N2 Fbor zﬁ(b) rg(b)] - [Ki(t) + KZ(t)] [MGor (uﬁHor - W)

' 2
* *2 %2 =
+ kror ro (b)-l-kaor rO (a) + kbor r° (b)] 0.

8. B submatrix, %g(t) uncoupled equation:
- ] ) - * -
u*(t) [ 2krFr zz (b) r§ (b) ZkaFr zc(a) rf(a) Zkar zz(b) r?(b)J
- w2 %2 %=
+ As(t) [ZMGFr (“’HHFr W) + 2krFrrF ) + 2kaFr r¥ (a)

+ 2k rf(b)] = 0.

9. B submatrix,

[03(t) + o&(t) + oi(t) + o&(r)]
uncoupled equation:

N =

ok (t) [— J2 K

. 25 () ' () -2 k, . 25(@) tx(a)

-2 k ot Ze(b) t?;(b):l + % [G’i(t) + o5(t) + ok(t) + o’g(t)}

. 2 2 1 2 2 2 _
[#Got (mHHot - W)+ krot tg (b) + kaot tg (@) + kbot tg (b)] 0.

19



. 1 *
10. B submatrix, 5-[04(t) + og(t)] uncoupled equation:

w* (t) [- Zk_p, 2k () £ () - ko zE@a) th(a) - g zE(b) t%(b)}

+

[

[0'4(12) + Ug(t):| [ CFt (MHHFC - (A)Z) + 2k rFt F Z(b)

+ 2k aFt F (a) + Zkat t% (b)} = 0.

11, C submatrix, v*(t) uncoupled equation:
V¥ (E) [IG o By = )+ Ky REVE (@) + 2Ky REEE(D) + Ky qﬂ@(s)J
+ 1 [alm - o8 - ok(D) + 06<t>} [ ot BE@) Ry<(@)
2k k(D) Rw*(b)] + % [cé(t) - oS (e) - oR(t) + oi(b) J

. {2kaFt t*(a) Ry*(b) + 2kat t*(b) Rw*(b)} =

12, C submatrix, ; [o%¥(t) - of(t) - o&(t) + aE(t)]
uncoupled equation:

s

vk (t) [Zkaot th(a) RyF(a) + 2k o tE(b) Rw*(b)] 3
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+% [cfi(t) - oR(t) - oi(t) + Ué(t)} [M(;ot SN

12 2 2
* ¥ * =
+k o th D)tk th(a) +k otk (b)] 0.

13. C submatrix, %-[di(t) - 04(t) - d7(t) + oa(t)]

uncoupled equation:

+ % [o’é(t) - Ui(t) - U?(t) + Gg(t):’ I:MGFt (wl'leFt - )

*12 . *2 %2 =
tk o o th ) +k . th@)+k tE (b)] 0.

14, D submatrix, [c?(t) + Ug(t) - Gé(t) - Uz(t)]
uncoupled equation:

[g’;(t) + o5(t) - of(t) - G’é(t)} [M(;ot (fgor = ¢

2 2 2
* + * + x (b ,
+ k t t (b) kaot to (a) kbot t0 ®) 0
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15. E submatrix, [o5(t) + oa(t) - oX(t) - or(t)]
uncoupled equations:

[og(t) + (L) - o¥(t) - Ug(t)} [MGFt (wEHFt - W)

2 2
%! % %= =
TR BF @rkp @) + kg, tF (b)jl 0.

IV, RESULTS

The most interesting result of this analysis is shown in the
existence of a set of generalized coordinates in which there is no
coupling in the equations of motion for center tank pitch, yaw, and
torsion, The multiple beam analysis (see reference) which has been
the basis for the Aero-Astrodynamics Laboratory computations of
Saturn I and IB frequencies and mode shapes is based on the implicit
assumption of such uncoupling, The analysis presented here establishes
the validity of this assumption,

The A submatrix, a seventeen-degrees-of-freedom system, was solved
using an eigenvalue iteration procedure. Input data were provided for
the Saturn SA-5 vehicle for 35 seconds flight time., A comparable
analysis was made using the basic multiple beam program described in
the reference. A comparison of the results of the basic program with
those obtained using the A submatrix of the analysis presented in this
report is shown in Table 1. Good correlation was obtained for this
system,

Two special types of nonsymmetry were analyzed in a limited
parameter study, By consideration of particular nonsymmetry conditions
along the principal axes of the coupled system, the set of simultaneous
equations was preserved in the uncoupled form. The effects of non-
symmetry were reflected thereby only as changes in the constant coef-
ficients supplied as input data to the computations. The types of
nonsymmetry considered were changes in the elastic characteristics of
the outer tanks and in the elastic support of the outer tanks. Results
of comparisons of the symmetrical vehicle response with that of the
unsymmetrical vehicle are given in Table 1,
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As can be seen from this comparison, the effects of these types
of nonsymmetry are relatively small. For example, the maximum change
in frequency caused by a.2l percent change in fuel tank stiffness is
about 1.9 percent. This occurs in the fourth mode, which is charac-
terized as a fuel tank tangential mode. Differences of the same order
exist between the results of the basic multiple beam analysis and the
present analysis. These differences are insignificant, Despite the
small magnitude of frequency changes, the analysis shows the effects
of such nonsymmetry qualitatively. For example, it can be seen that
increasing the fuel tank stiffness increases all seven natural fre-
quencies tabulated.

The results presented here do not treat all of the cases of
interest; however, computer program limitations restricted this study
to these simple cases, When this deficiency is corrected, more com-
plex cases of nonsymmetry will be treated and the results repérted.
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TABLE 1

Frequency (radians/sec)

ode Desfgggtion Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
1 FIR 13.29 13.29 13.30 13.28 13.29 13.29
2 LTR 15,17 15.21 15.35 15,02 15,21 15,21
3 CT1 15.77 16,18 16,20 16,15 16,18 16.18
4 FIT 17.92 17.96 18.30 17.67 17.96 17.96
5 LTT 26.26 26,57 26.85 26,33 26,57 26.57
6 CT2 35.00 35,09 35.11 35.07 35.09 35,09
7 CT3 64,61 64,66 64,66 64.66 64.66 64,66

Case Description
1 basic multiple beam theory
2 subject analysis for symmetrical vehicle
3 subject analysis, fuel tank stiffness up 21 percent
4 subject analysis, fuel tank stiffness down 21 percent
5 subject analysis, fuel tank support stiffness up 10 percent
6 subject analysis, fuel tank support stiffness down 10 percent

Abbreviation Mode Description

FTR fuel tank radial

LTR 10X tank radial

CTl (2,3) center tank first (second, third) mode

FTT fuel tank tangential

LTT LOX tank tangential
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